Sir Francis Ronalds FRS (21 February 17888 August 1873) was an English scientist and inventor, and arguably the first electrical engineer. He was knighted for creating the first working electric telegraph over a substantial distance. In 1816 he laid an length of iron wire between wooden frames in his mother's garden and sent pulses using electrostatic generators. He also is known for creating the first electric clock in 1814.
Several of Ronalds' eleven brothers and sisters also led noteworthy lives. His youngest brother Alfred Ronalds authored the classic book The Fly-fisher's Entomology (1836) with Ronalds' assistance before migrating to Australia. His brother Hugh was one of the founders of the city of Albion in the American Midwest, and sister Emily Ronalds epitomised the family's interest in social reform. Other sisters married Samuel Carter – a railway solicitor and MP – and sugar-refiner Peter Martineau, the son of Peter Finch Martineau.
Nurseryman Hugh Ronalds was his uncle, and his nephews included chemistry professor Edmund Ronalds, artist Hugh Carter, barrister John Corrie Carter and timber merchant and benefactor James Montgomrey. Thomas Field Gibson, a Royal Commissioner for the Great Exhibition of 1851, was one of his cousins.
Other inventions in this early period included an electrograph to record variations in atmospheric electricity through the day; an influence machine that generated electricity with minimal manual intervention; and new forms of electrical insulation, one of which was announced by Singer. He was also already creating what would become the renowned Ronalds Library of electrical books and managing his collection with perhaps the first practical Library catalog.
His theoretical contributions included an early delineation of the parameters now known as electromotive force and current; an appreciation of the mechanism by which dry piles generated electricity; and the first description of the effects of induction in retarding electric signal transmission in insulated cables.
electricity, may actually be employed for a more practically useful purpose than the gratification of the philosopher's inquisitive research… it may be compelled to travel... many hundred miles beneath our feet... and... be productive of... much public and private benefit... why... add to the torments of absence those dilatory tormentors, pens, ink, paper, and posts? Let us have electrical conversazione offices, communicating with each other all over the kingdom.
He complemented his vision with a working telegraph system built in and under his mother's garden at Hammersmith. It was infamously rejected on 5 August 1816 by Sir John Barrow, Secretary at the Admiralty, as being "wholly unnecessary". Commercialisation of the telegraph only began two decades later in the UK, led by William Fothergill Cooke and Charles Wheatstone, who both had links to Ronalds' earlier work.
In 1840, he applied his understanding of perspective in developing more complex apparatus to aid the accurate depiction of cylindrical panoramas, which were a popular exhibition at that time.
He applied his technique in electrographs to observe atmospheric electricity, and thermo-hygrographs to monitor the weather, and magnetographs to record the three components of geomagnetic force. The magnetographs were used by Edward Sabine in his global geomagnetic survey while the barograph and thermo-hygrograph were employed by the new Met Office to assist its first weather forecasts. Ronalds also supervised the manufacture of his instruments for other observatories around the world (the Radcliffe Observatory under Manuel John Johnson and the Colaba Observatory in India are two examples) and some continued in use until late in the 20th century.
To observe atmospheric electricity, Ronalds created a sophisticated collecting apparatus with a suite of ; the equipment was later manufactured and sold by London instrument-makers. A dataset of five years' duration was analysed and published by his observatory colleague William Radcliffe Birt.
The phenomenon now known as geomagnetically induced current was observed on telegraph lines in 1848 during the first sunspot peak after the network began to take shape. Ronalds endeavoured to employ his atmospheric electricity equipment and magnetographs in a detailed study to understand the cause of the anomalies but had insufficient resources to complete his work.
He died at Battle, near Hastings, aged 85, and is buried in the cemetery there. The Ronalds Library was bequeathed to the newly formed Society of Telegraph Engineers (soon to become the Institution of Electrical Engineers and now the Institution of Engineering and Technology) and its accompanying bibliography was reprinted by Cambridge University Press in 2013.
Ronalds had a very modest and retiring nature and did little to publicise his work through his life. During his last years, however, his key accomplishments became well known and revered in the scientific community, aided in particular by his friends Josiah Latimer Clark and Edward Sabine and his brother-in-law Samuel Carter. He was knighted at the age of 82. Colleagues at the Society of Telegraph Engineers regarded him as "the father of electric telegraphy", while his continuously recording camera was noted to be "of extreme importance to meteorologists and physicists, and… employed in all first-rate observatories". His portrait was painted by Hugh Carter. Commemorative plaques have been installed on two of his former homes in Highbury and Hammersmith, and a road was named after him in Highbury. Ronalds Point in Antarctica is named after him.
|
|